Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170379, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280593

RESUMO

Alkyl-PAHs (APAHs) have been identified worldwide, which could rapidly react with chlorine and OH radicals in the atmosphere. In this study, a comprehensive investigation is conducted for SOA generated by a representative alkyl-naphthalene (1-methyl naphthalene, 1-MN) initiated by Cl, including yield, chemical composition, and volatility of SOA. To better understand 1-MN atmospheric oxidation, reaction mechanisms of 1MN with Cl atoms and OH radicals are proposed and compared under different nitrogen oxides (NOx) conditions. The SOA yields are comparable for Cl-initiated and OH-initiated reactions under high NOx conditions but increased in Cl-initiated reactions under low NOx conditions. The compounds with ten carbons are more abundant in Cl-initiated SOA, while compounds with nine carbons have higher intensity, suggesting that Cl caused ring-retained and alkyl-lost products and OH produces ring-broken and alkyl-retained compounds. The volatility of SOA is remarkably low, and SOA formed from Cl oxidation is slightly higher than that from OH oxidation. These results reveal that 1MN-derived SOA with OH and Cl radicals would have different physical-chemical properties and may play an important role in air quality and health effects.

2.
Environ Sci Technol ; 56(8): 4859-4870, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35319183

RESUMO

Long-chain alkanes are a type of intermediate volatility organic compound (IVOC) in the atmosphere and a potential source of secondary organic aerosols (SOAs). C12-C14 n-alkylcyclohexanes are important compositions of IVOCs, with considerable concentrations and emission rates. The reaction rate constants and SOA formation of the reactions of C12-C14 n-alkylcyclohexanes with Cl atoms were investigated in the present study. The reaction rate constants of the long-chain alkanes obtained via the relative-rate method at 298 ± 0.2 K (in units of ×10-10 cm3 molecule-1 s-1) were as follows: khexylcyclohexane = 5.11 ± 0.28, kheptylcyclohexane = 5.56 ± 0.30, and koctylcyclohexane = 5.74 ± 0.31. The gas-phase products of the reactions were identified as mainly small molecules of aldehydes, ketones, and acids. The particle-phase products were mostly monomers and oligomers, but there were still trimers even under high-NOx conditions. Moreover, under high-NOx conditions (urban atmosphere), the SOA yields of hexylcyclohexane are higher than that under low-NOx conditions (remote atmosphere), indicating that more attention should be given to the SOA formation of Cl-initiated n-alkylcyclohexane oxidations in polluted regions. This research can further clarify the oxidation processes and SOA formation of n-alkylcyclohexanes in the atmosphere.

3.
J Environ Sci (China) ; 116: 25-33, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35219422

RESUMO

The reaction of Cl atoms with two C5 aldehydes (3-methyl-2-butenal and 3-methylbutanal) were investigated by proton-transfer-reaction mass spectrum (PTR-MS) using smog chamber at 298 ± 1 K and 760 Torr. A relative rate method was used to determine the rate constants of the title reactions with m-xylene and trans-2-butene as reference compounds: (3.04 ± 0.18)  × â€¯10-10 and (2.07 ± 0.14) â€¯× â€¯10-10 cm3/(molecule⋅sec) for 3-methyl-2-butenal and 3-methylbutanal, respectively. Additionally, the gas-phase products were also identified by PTR-MS, and the possible reaction mechanisms were proposed basing on the identified products. The detected gas-phase products are similar for two C5 aldehydes reactions, mainly including small molecules of aldehydes, ketones and chlorinated aldehyde compounds. The atmospheric lifetimes (τ) calculated for 3-methyl-2-butenal (τ = 7.0 hr, marine boundary layer (MBL)) and 3-methylbutanal (τ = 10.3 hr, MBL) according to the obtained rate constants. The results indicate that Cl atoms at MBL are competitive with OH radicals for the degradation contribution of C5 aldehyde compounds.


Assuntos
Aldeídos , Cloro , Cinética
4.
J Phys Chem A ; 124(4): 721-730, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31917920

RESUMO

The reaction of ethyl propyl ether (EnPE) with OH radicals was studied using proton-transfer-reaction mass spectrum (PTR-MS), and the rate constant was measured at 298 K and atmospheric pressure using the relative rate method: kexp(OH+EnPE) = (1.13 ± 0.09) × 10-11 cm3 molecules-1 s-1. In addition, a parallel theoretical study was performed using the traditional transition state theory (TST) with a tunnelling effect correction in combination at M05-2X method with two basis sets, 6-311++G(d,p) and aug-cc-pVTZ. According to these calculations, H atom abstraction occurs more favorably from the methylene group adjacent to the -O- bond than from the other groups. The theoretical calculation of the total rate constant of the reaction of EnPE with OH radicals was consistent with the experimental values. The gas-phase products indicated that the major products observed were ethyl formate, ethyl propionate, propionic acid. Combined with the experimental and theoretical results, the possible reaction mechanisms were proposed and discussed. The atmospheric implications of the studied reaction are presented, and the lifetime of EnPE in the presence of OH radicals was evaluated to be approximately 1 day.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...